

INDIAN SCHOOL AL WADI AL KABIR Sample Paper 2022-23 SUB: Mathematics (Basic)(241)

Date: 07/11/2022

Time Allowed :3 hours

Class: X

Maximum Marks:80 marks

General Instructions:

1. This Question Paper has 5 Sections A, B, C, D, and E.

2. Section A has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.

3. Section B has 5 Short Answer-I (SA-I) type questions carrying 2 marks each.

4. Section C has 6 Short Answer-II (SA-II) type questions carrying 3 marks each.

5. Section D has 4 Long Answer (LA) type questions carrying 5 marks each.

6. Section E has 3 Case Based integrated units of assessment (4 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.

7. All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.

8. Draw neat figures wherever required. Take $\pi = \frac{22}{7}$, wherever required if not stated.

SECTION A

	Section A consists of 20 questions of 1 mark each.										
SN											
1	In a bag, there are 100 bulbs of which 30 are bad ones. A bulb is taken out of the bag at random. The probability of the selected bulb to be good is:										
	A	0.7	B	0.5	С	0.3	D	0.1			
2	The	e lines represented by	the	equations x – 2y	= 0 ar	d 4x + 3y = 0 are	:				
	A	A Parallel			В	intersecting at two different points					
	C	intersecting exact	ctly	at one point	D	Coincident					

3	The	The graph of $y = f(x)$ is given. The number of zeroes of $f(x)$ is:								
	$\begin{array}{c} & & \\$									
	A	0		B	1	С		2	D	3
4	If s	$ec\theta = \frac{13}{5}$, th	en tanθ is	:						
	A	5 13	Ī	B	$\frac{12}{5}$	C	-	5 12	D	$\frac{12}{13}$
5	The	The point on the x-axis which is equidistant from (-4, 0) and (10, 0) is								
	A	(7,0))	B	(5, 0)	С	((), 0)	D	(3, 0)
6	The	e value of (1	$(+\tan^2\theta)$	(1 –	$\sin \theta$) (1 + $\sin \theta$	9) is:				
	Α	0		B	$\cot \theta$	С	$\sec \theta$		D	1
7	The	e roots of the	e quadrati	c eq	uation $x^2 + x - 5$	= 0 are	:			
	A	0				В		real and distinct		
	С		real and	d equ	ıal	D	no real roots			oots
8	For	the followin	g distribut	ion, t	he sum of lower	limits o	f the me	dian class	and	modal class is:
	Cl	ass	0-5		5-10	10	-15	15-20	0	20-25
	Fr	equency	10		15	1	2	20		9
	A	15		B	25	С		30	D	35
9	If th	he perimeter	of one face	e of a	cube is 20 cm, tl	nen its s	surface a	rea is:	1	
	A	120 c	m^2	B	150 cm^2	С	12:	125 cm^2 D 400		400 cm ²
10	The	e median and	mode resp	ectiv	vely of a frequence	y distri	bution a	re 26 and 2	29, T	hen its mean is:
	A	24.:	5	B	27.5	С	2	28.4	D	25.8

ISWK/CLASS X/SAMPLE PAPER/SHAROL BAINU THOMAS (2022_2023)

11	In the given figure, MN QR. If PM = x cm, PN = $(x - 2)$ cm, NR = 6 cm, then the value of x is:									
	P X N Q R									
	A	5 cm	B	7 cm	С	8 cm	D	12		
12		positive integers ers, then LCM (p		q can be express	sed as	$p = ab^2$ and $q =$	a ³ b; a	a, b being prime		
	Α	ab	B	a^2b^2	C	a ³ b ²	D	a ³ b ³		
13	If the point P(k, 0) divides the line segment joining the points A(2, -2) and B(- 7, 4) in ratio1 : 2, then the value of k is:							- 7, 4) in the		
	Α	1	B	2	С	-2	D	-1		
14	Evaluate: $\frac{2\tan 45^\circ \times \cos 60^\circ}{\sin 30^\circ}$									
	A	0	B	1	C	2	D	3		
15	A 0 B 1 C 2 B 3 The minute hand of a clock is 12 cm long. The area of the face of the clock described by the minute hand in 35 minutes is: 1 </th									
	Α	148 cm ²	B	264 cm^2	C	132 cm^2	D	198 cm ²		
16		ICF and LCM of number is:	two nu	mbers are 9 and	360 r	espectively. If o	ne nu	mber is 45, the		
	A	720	В	648	C	1800	D	72		

17	The perimeter of a sector of a circle whose central angle is 90° and radius 7 cm is:									
	Α	50π cm	B	35π cm	С	50 cm	D	25cm		
18	Two concentric circles are of radii 10 cm and 8 cm, then the length of the chord of the larger circle which touches the smaller circle is: $ \begin{array}{c} \hline $									
	A 6cm H		В	12cm	С	18cm	D	9cm		
19	foll Ass Rea (a) of a (b) exp (c) (d)	 DIRECTION: In the question number 11 and 12, a statement of assertion (A) is followed by statement of Reason (R). Choose the correct option. Assertion: The HCF of two numbers is 5 and their product is 150, then their LCM is 30. Reason: For any two positive integers a and b, HCF (a, b) + LCM (a, b) = a × b (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false. (d) Assertion (A) is false but reason (R) is true. 								
20	 Assertion: The point (-1, 6) divides the line segment joining the points (-3, 10) and (6, -8) in the ratio 2: 7 internally. Reason: Given three points, i.e. A, B, C form an equilateral triangle, then AB = BC = AC. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) 									

	A horse is tethered to one corner of a rectangular field of dimensions 70 m \times 52 m, by a rope of									
	length 21m. How much area of the field can it graze?									
	In Figure, a quadrilateral ABCD is drawn to circumscribe a circle.									
	Prove that $AB + CD = BC + AD$.									
25	A B D R C C									
	SECTION C									
	Section C consists of 6 questions of 3 marks each.									
	Three different coins are tossed together. Find the probability of getting									
26	(i) exactly two heads									
	(ii) at least two heads									
	(iii) at least two tails.									
27	Prove that the lengths of the tangents drawn from an external point to a circle are equal.									
	A part of monthly hostel charge is fixed and the remaining depends on the number of days one									
	has taken food in the mess. When Swati takes food for 20 days, she has to pay ₹ 3,000 as hostel									
	charges whereas Mansi who takes food for 25 days ₹ 3,500 as hostel charges. Find the fixed									
28	charges and the cost of food per day.									
	OR									
	Solve the following pair of linear equations graphically:									
	x + 2y = 8; 2x - 3y = 2									
	Also shade the triangular region formed by the lines obtained in the graph and y – axis.									
29	Prove that $3 + 2\sqrt{3}$ is an irrational number.									
	If $\tan (A + B) = 1$ and $\tan (A - B) = \frac{1}{\sqrt{3}}$, $0^{\circ} < A + B < 90^{\circ}$, $A > B$, then find the values of A and									
30	B.									

	OR									
	Prove that $(1 + \cot A - \csc A) (1 + \tan A + \sec A) = 2$									
31	Find the zeroes of the quadratic polynomial $5x^2 + 8x - 4$ and verify the relationship between the zeroes and the coefficients of the polynomial.									
	SECTION D									
	Section D consists of 4 questions of 5 marks each.									
	Prove that If a	a line is drawr	n parallel to or	e side of a tria	angle to inters	ect the other t	wo sides in			
32	distinct points	distinct points, the other two sides are divided in the same ratio.								
	Find x: $\frac{1}{x-2}$	$+\frac{2}{x-1}=\frac{6}{x};x=$	≠ 0, 1, 2							
33	OR									
	A motorboat whose speed in still water is 9 km/h, goes 15 km downstream and comes back to									
	the same spot, in a total time of 3 hours 45 minutes. Find the speed of the stream.									
	The distribution given below shows that the number of wickets taken by bowler in one-day cricket matches. Find the mean and the median of the number of wickets taken.									
34	No. of wickets	20-60	60-100	100-140	140-180	180-220	220-260			
	No. of bowlers	7	5	16	12	2	3			
	A solid toy in	the form of a	hemisphere s	urmounted by	a right circula	ar cone of sam	ne radius. The			
	height of the cone is 10 cm and the radius of its base is 7 cm. Determine the volume of the toy.									
	Also find the area of the coloured sheet required to cover the toy.									
				OR						
35	In fig., a tent	is in the shape	e of a cylinder	surmounted b	y a conical to	p of same dia	meter.			
	If the height a	and diameter of	of cylindrical p	part are 2.1 m	and 3 m respe	ctively and th	e slant height			
	_				to make the te	ent if the canva	as is available			
	at the rate of [∎]	₹ 500/sq. metr	re. (Use $\pi = \frac{22}{7}$	2)						
			-							

	2.1 m	
	SECTION E	
	Case Study Based Questions are compulsory.	
36	Case Study -1	
	Qutab Minar, located in South Delhi, India, was built in the year 1193. It is 72 m	high
	tower. Working on a school project,	
	Charu and Daljeet visited the	Carl III
	monument. They used trigonometry to	
	find their distance from the tower.	
	Observe the picture given below.	
	Points C and D represent their	
	positions on the ground in line with the	1.1.2
	base of the tower,	
	The angles of elevation of the top of	
	the tower(Point A) are 60° and 45°	P
	from points C and D respectively.	

Ι	Based on the above information draw a wall labelled diagram	1					
	Based on the above information, draw a well labelled diagram.						
II	Find the distance BC.	1					
III	Find the distance CD.	2					
	OR						
	Find the distance AC.						
	Study – 2						
	are two routes to travel	\frown					
	ource A to destination	$\mathbf{\nabla}$					
	bus. First bus reaches at	tore					
	s from A to B directly. Scale: x-axis: 1 unit = 1 km						
	vavis (1 unit – 1 km						
The position of A, B and C are represented by the							
-	ring graph.						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Dagar	d on the above information answer the following questions.						
	What is the distance between B and C?						
Ι	What is the distance between B and C?						
I II	What is the distance between A and C?						
Ι							

		If the fare for the second bus is ₹15 per km, what is the fare for the journey from A to B by that bus?(Take $\sqrt{13} = 3.61$)					
38	Roshni l nursery. She plac number	tudy Based-3 being a plant lover decides to start a She bought few plants with pots. ced the pots in such a way that the of pots in the first row is 2, in the is 5, in the third row is 8 and so on.					
	Based of	on the above information answer the following questions.					
	Ι	How many pots were placed in the 7th row?					
	II	If Roshni has sufficient space for 12 rows, then how many pots are placed by her with the same arrangement?					
	III	If Roshni wants to place 100 pots in total, what is the total number of rows formed in the arrangement?					
		OR					
		What is the difference in number of pots placed in the 4^{th} row and the 2^{nd} row?					

	Answers										
s	1	А	2	С	3	А	4	В			
Answers	5	D	6	D	7	В	8	В			
NSU	9	В	10	А	11	А	12	С			
A	13	D	14	В	15	В	16	D			
	17	В	18	В	19	С	20	b			
	21	x=3, y=4	22	Proof	23	30°	24	3: 2 OR 346.5 m ²			
	25	Proof	26	$\frac{3}{8}, \frac{1}{2}, \frac{1}{2}$	27	Proof	28	1000, 100 OR x=4, y = 2			
	29	Proof	30	37.5°, 7.5°	31	$\frac{2}{5}$, -2	32	Proof			
	33	⁴ / ₃ , 3 OR 3 km/hr	34	125.33,126.25	35	1232cm ³ , 576.4cm ² OR ₹16500	36	(II) $24\sqrt{3}$ m (III) $24(3-\sqrt{3})$ m OR $48\sqrt{3}$ m			
	37 I. √2 m, II.5√2 m III. 84.6 ₹ OR 108.3 ₹					I. 20, II.	. 222,	III. 8 OR 6			